FS 466 Wine Microbiology and Processing Laboratory (1 cr)
Fall Semester 2014

LABORATORIES
F 2:10 to 5 pm in the Food Science and Human Nutrition Building.

- Student Winery (room G20)
- Presentation Area (room 103/155)
- Teaching Laboratory (room 140)
- Student Laboratory (room 303)

PREREQUISITES
Current or past enrollment with a passing grade in FS 465/565 Wine Microbiology and Processing Lecture is required.

INSTRUCTOR
Dr. Charles G. Edwards
320 Food Science Human Nutrition Building
509-335-6612 or edwardsc@wsu.edu

OFFICE HOURS
Call/email for an appointment but avoid the hour prior to lectures or laboratories (instructor preparation time).

REQUIRED TEXT

RECOMMENDED TEXTS

TEACHING ASSISTANT
Zachary Cartwright (zachary.cartwright@email.wsu.edu) available in FSHN Building room 318.

COURSE SYNOPSIS
FS 466 Wine Microbiology and Processing Laboratory is designed to assist in understanding material presented in the corresponding lecture (FS 465/565) by providing a hands-on approach to wine fermentations. The course will focus on familiarization with winemaking processes and equipment along with methods of chemical and microscopic analyses.

REQUIRED MATERIALS
Safety glasses MUST be worn at all times when in laboratory or processing wine. Though a pair will be provided for each student, students can choose to bring their own safety glasses. Clothing should be comfortable, avoiding loose items (scarves, jewelry, etc.) or open-toed shoes. Be sure to wear clothing suitable for being stained or soiled during processing days as winemaking can be very messy.

ATTENDANCE POLICY
Make-up laboratories will not be available. Unexcused absences from a laboratory period or the field trip will result in a 25-point reduction in participation score. A penalty of 10 points/day will be assessed for those reports that are turned in after specified due dates and times.
COURSE OUTLINE

Topics (room)

Aug. 29 (1st meeting) Introduction and tour (room 140).
 • Review chemical/microbiological analyses.
 • Discuss unknown wine and record-keeping assignment.
 • Tour student winery and laboratory facilities.

Sept. 5 (2nd) Exercise A: Microscope training (room 140).
 • Draft of approach to unknown wine assignment due.

Sept. 12 (3rd) Exercises A/B: Unknown wines (room 303).
 • Draft of record-keeping assignment due (each group should email a single .doc file to edwardsc@wsu.edu).

 • Lecture from Alcohol and Tobacco Tax and Trade Bureau (TTB).
 • Return comments from TTB regarding student proposed record-keeping scheme.

Sept. 26 (5th) Exercises A/B: Unknown wines (room 303).
 • Unknown wines available for analyses.
 • Assign which students are going to Prosser on Thursday for grape harvest.

Oct. 3, 10 (6th, 7th) Exercise C: White grape fermentations (room G20).
 • Half of the class travels to Prosser to harvest white grapes on October 2 (Thursday) in preparation for class the next day. NOTE: Due to scheduling and weather, may have to wait one week for harvest. WINERY VISIT: Zirkle Wine Company? (Prosser, WA)
 • Process white grapes (Friday and Saturday).
 • Class will meet each period to discuss status of fermentations.

Oct. 17, 24, 31 (8th, 9th, 10th) Exercise C: Red grape fermentations (room G20).
 • Half of the class travels to Prosser to harvest red grapes October 16 (Thursday) in preparation for class the next day. WINERY VISIT: Canoe Ridge Winery? (Paterson, WA)
 • Process red grapes (Friday and Saturday/Sunday for punch-downs).
 • Class will meet each period to discuss status of fermentations.

Nov. 7, 14, 21 (11th, 12th, 13th) Exercise D: Finishing operations and variable analyses (room G20).

Nov. 28 THANKSGIVING HOLIDAY

Dec. 5, 12 (14th, 15th) Oral group reports (rooms 103/155).
INSTRUCTIONAL METHODS

This course will stress an understanding of concepts and principles learned in lecture towards the manufacture of wines under various conditions using an independent “hands-on” approach. At the beginning of the semester, basic analytical methods used by wineries will taught in order to learn how to diagnose quality problems during vinification. Student groups (two per group) then will be assigned three white wines and three red wines to prepare under specific conditions to demonstrate the impact of fermentations on wine quality (i.e., fermentation temperatures, presence of oak chips, etc.). General guidance for processing will be provided but the instructor will not directly provide answers to student asked questions regarding processing options. Rather, the students will be encouraged to share their professional view(s) of the issue and then to logically work through the problem to arrive at a possible answer (frequently, there is more than one answer). All processing decisions will be made by the student groups and must be defended when the wines are presented to fellow students and faculty at the end of the semester.

LEARNING OBJECTIVES

At the end of this course, a student will be able to:

1. Identify typical processing unit operations used to prepare white and red wines.

2. Construct and implement logic schemes towards analysis of a contaminated wine.

3. Understand the impact of processing treatments on wine quality.
 a. Develop a record-keeping scheme to be applied in winemaking.
 b. Apply principles taught in FS 465 lecture towards preparing wines under different processing schemes.
c. Explain and interpret changes to fermentation and ultimately wine quality based on changes to processing.

ANALYSIS OF UNKNOWN WINES

1. Description

For this exercise, you are a wine microbiologist working for a large winery that has a problem with a wine in a tank. To simulate a potential spoilage problem, your student group will be given two wines (250 mL each); one a control wine and the other inoculated with a spoilage microorganism(s). Using a range of sensory, chemical, and microbiological analyses described in the laboratory manual (Edwards 2012), student groups will identify which wine sample was spoiled and what microorganism(s) were present. Microorganisms potentially present could be: (a) *Saccharomyces*, (b) *Brettanomyces*, (c) non-*Saccharomyces* yeasts (i.e., *Kloeckera*, *Pichia*, *Candida*, or *Zygosaccharomyces*), (d) *Oenococcus*, (e) *Pediococcus*, (f) *Lactobacillus*, and/or (g) *Acetobacter*. For sensory testing, only smelling is allowed (NO tasting).

2. Format of written report

Formats will vary but should include a cover memorandum to a “fictional boss” attached to your technical report. The report should include title, author, executive summary, purpose/objectives, procedures (can cite the laboratory manual), data/results of the experiments, discussion, and conclusions/recommendations. Citation of references that help support your results and conclusions is very strongly encouraged. Do not cite FS 465/565 Lecture Notes, the instructor, or laboratory partners as references. Caution should be exerted if using the internet to find citations (information should be refereed by non-biased referees as those used in publishing original research). All reports should be typed with double spacing. Use of headers within the reports is highly encouraged. Reports must be submitted in hard copy format rather than by electronic means (the instructor is not responsible for printing).

When approaching a technical problem, it is important to know as much about the problem as possible before attempting to implement a solution. Thus, there may be additional questions regarding the production of the wines in order to make recommendation(s) to the winery on how to handle the contaminated sample. Be sure to describe these questions in the report and explain why answers to these questions will help solve the problem. Processing control methods that should be implemented by the winery need to be discussed in the report. Student groups may propose additional analytical methodology if necessary.

Each student group should work as a team towards the analysis of the wines while individual members within a group will prepare and write their own report. Although it would be ideal for all members of a student group to agree on conclusions and recommendations, this may not always be the situation. Whether members agree or not, individual reports must provide adequate support for the conclusions presented.

APPROACH TO UNKNOWN WINE DRAFT September 5, 2014 by 5:00 pm (PST)

FINAL UNKNOWN WINE REPORT October 10, 2014 by 5:00 pm (PST)
PROCESSING WRITTEN/ORAL REPORTS

1. Description

Student groups will develop a record keeping scheme to document each step of processing their white and red wines. The approach will be forwarded to an official in the United States Alcohol and Tobacco Tax and Trade Bureau (TTB) who has legal jurisdiction regarding winery records. General feedback will be provided to students that should be incorporated into wine processing and final reports.

For Part I within the final report, a complete discussion of how records were maintained plus the actual records will be required. In Part II, the student group will present data and discuss the results of the various treatments imposed on the white and red wines made during the semester.

2. Format of approach to record-keeping/written processing report

Students will write a brief one-page outline of how each group will maintain records of wine processing. Be sure to include an example “spread sheet” or “form” to illustrate how records will be kept.

Though each student group should work as a team towards the analysis of the wines, members within a group will prepare and write their own report. The technical report will include title, author, executive summary, purpose/objectives, procedures (in detail as to what the group exactly did), data/results of the experiments, and conclusions. Use of a cover memo to a “fictional boss” is optional.

Citation of at least three references supporting your results is required. While two of the references may be textbooks, at least one reference should be from a refereed journal describing original data. Do not cite FS 465/565 Lecture Notes, the instructor, or your laboratory partners as references. All reports should be typed with double spacing. Use of headers within the reports is highly encouraged.

RECORD-KEEPING DRAFT September 12, 2014 by 5:00 pm (PST)

FINAL PROCESSING REPORT November 21, 2014 by 5:00 pm (PST)

3. Format of oral report

Student groups will orally present results from their wine fermentation experiments during the last one to three laboratory periods of the course. Each presentation will be 30 minutes in length, followed by questions from fellow students and faculty for up to an additional 30 minutes.
FS 466 ORAL PRESENTATION EVALUATION

Presenters’ Names: _______________________________ Group Number: ___________

Date: ______________ Final Score: ______________

1. Depth of discussing fermentation treatments (were reasonable arguments presented? Were references and other information used to explain treatments?)
 1 2 3 4 5 6 7 8 9 10 (points)

2. Overall logic and clarity of ideas (presentation easy to follow and understand?)
 1 2 3 4 5 6 7 8 9 10 (points)

3. Appropriate use of visual aids (too many/too few and readability?)
 1 2 3 4 5 6 7 8 9 10 (points)

4. Evidence of teamwork (did the group work together?)
 1 2 3 4 5 6 7 8 9 10 (points)

5. Presentation of wines (appropriate set-up and organization?)
 1 2 3 4 5 (points)

6. Handling of questions/comments (understanding beyond what was presented?)
 1 2 3 4 5 (points)

7. Other comments
STUDENT POLICIES

Current academic policies and procedures can be found on the WSU Registrar website located at the following address: http://www.registrar.wsu.edu/Registrar/Apps/AcadRegs.ASPX.

Students with Disabilities

Reasonable accommodations are available for WSU students with a documented disability. If you have a disability and need accommodations to fully participate in this class, please either visit or call the Access Center (Washington Building 217; 509-335-3417) to schedule an appointment with an Access Advisor. All accommodations MUST be approved through the Access Center.

Reasonable accommodations are available for UI students who have documented temporary or permanent disabilities. All accommodations must be approved through Disability Support Services located in the Idaho Commons Building, Room 306 in order to notify your instructor(s) as soon as possible regarding accommodation(s) needed for the course. Contact DSS at www.access.uidaho.edu (email: dss@uidaho.edu; phone: 208-885-6307).

Academic Integrity

WSU expects all students to behave in a manner consistent with its high standards of scholarship and conduct. Students are expected to uphold these standards both on and off campus and acknowledge the university's authority to take disciplinary action. The purpose of these standards and processes is to educate students and protect the welfare of the community. The standards of Conduct for Students can be found at http://conduct.wsu.edu. University instructors have the authority to intervene in all situations where students are suspected of academic dishonesty. In such instances, responsible instructors retain the authority to assign grades to students considering, from an academic standpoint, the nature of the student action. More information regarding responding to academic integrity violations can be found at http://academicintegrity.wsu.edu/. Feel free to contact the Office of Student Standards and Accountability (509-335-4532) if you would like more specific information about the process. Writing Programs (509-335-7959) can assist with proactive assignment design that minimizes intentional or unintentional academic dishonesty.

Cases of academic dishonesty shall be processed in accordance with academic integrity policies as stated in the Washington State University Student Handbook, Faculty Manual (WSU students) or the University of Idaho Faculty Staff Handbook (UI students). In general, avoid conversations with fellow students, do not read a newspaper or complete crosswords, and turn off cellular phones during class.

Safety

Washington State University is committed to maintaining a safe environment for its faculty, staff, and students. Safety is the responsibility of every member of the campus community and individuals should know the appropriate actions to take when an emergency arises. In support of our commitment to the safety of the campus community the University has developed a Campus Safety Plan (http://safetyplan.wsu.edu). It is highly recommended that you visit this web site as well as the University emergency management web site (http://oem.wsu.edu/emergencies) to become familiar with the information provided. Other safety information can be accessed through the WSU ALERT site (http://alert.wsu.edu).

PLAGIARISM

Plagiarism is defined by Webster’s Dictionary as, “to steal and pass off the ideas or words of another as one’s own.” There are two general forms of plagiarism:

1. Unintentional: the use of other writers’ words, phrases, sentences, paragraphs as though they were your own without understanding the need to cite the original source. Unintentional plagiarism normally
occurs when the individual does not understand the conventions of scientific writing and the need to cite sources of information.

2. Intentional: the use of another writers’ work and claiming it as your own. Intentional plagiarism includes *knowingly copying* or incorporating sections of books, articles, or other sources into your work without citation.

To evade plagiarism, you must acknowledge the source of information. In scientific writing, this can be performed in the text of your work through the use of surnames of authors and the year of publication (e.g., Smith et al., 2003) or by using numbers enclosed by parentheses which correspond to specific citations in the reference section. In addition to employing citations in the text, plagiarism can be avoided by applying special techniques when writing about information obtained from a source:

1. Paraphrase: rewording information in which you accurately present the main ideas from the source but do so using your own organization, words, and sentence structures.

2. Summary: a concise statement of the main idea from a section within a source.

3. Direct quotation: use of quotes surrounding the passage written by another author.

In general, paraphrasing (a) and the use of summary statements (b) are very common techniques used in scientific writing. Use of quotations (c) in scientific writing is rare and should be avoided.

Plagiarism is dishonest and is **not** tolerated. If caught using all or portions of a current or former classmate’s writing or other sources of information (e.g., purchase a paper), a grade of “zero” will be given for the exercise. Additional penalties for plagiarism are possible as outlined in the *Washington State University Student Handbook*.

CONSUMPTION OF ALCOHOL-CONTAINING BEVERAGES

In accordance with state and federal laws, students below the age of 21 will **NOT** be allowed to orally consume any of the wines prepared. This policy will be strictly enforced.